

J a v a P r o g r a m m i n g
Second Edition (Updated)
Instructor’s Edition

Java Programming, Second Edition (Updated)

Series Product Managers: Caryl Bahner-Guhin and Adam A. Wilcox
Developmental Editor: Linda Long
Project Editor: Kim Neitzka
Series Designer: Adam A. Wilcox

COPYRIGHT © 2004 Axzo Press

ALL RIGHTS RESERVED. No part of this work may be reproduced, transcribed, or used in any form or by any
meansgraphic, electronic, or mechanical, including photocopying, recording, taping, Web distribution, or
information storage and retrieval systemswithout the prior written permission of the publisher.

For more information, go to www.axzopress.com.

Trademarks
ILT Series is a trademark of Axzo Press.

Some of the product names and company names used in this book have been used for identification purposes only and
may be trademarks or registered trademarks of their respective manufacturers and sellers.

Disclaimer
We reserve the right to revise this publication and make changes from time to time in its content
without notice.

ISBN-10: 0-619-28726-8 / ISBN-13: 978-0-619-28726-9

Printed in the United States of America

1 2 3 4 5 GL 06 05 04 03

C o n t e n t s

Introduction v
Topic A: About the manual... vi
Topic B: Setting student expectations .. xi
Topic C: Classroom setup.. xvi
Topic D: Support... xviii

Getting started 1-1
Topic A: Programming basics.. 1-2
Topic B: The Java platform ... 1-7
Topic C: Installing Java .. 1-10
Topic D: Language syntax and conventions ... 1-16
Unit summary: Getting started .. 1-34

Using data in a program 2-1
Topic A: Constants and variables .. 2-2
Topic B: Data types and character sets .. 2-7
Unit summary: Using data in a program ... 2-30

Methods, classes, and objects 3-1
Topic A: Methods .. 3-2
Topic B: Classes ... 3-18
Unit summary: Methods, classes, and objects... 3-40

Advanced object concepts 4-1
Topic A: Blocks and scope .. 4-2
Topic B: Method overloading.. 4-8
Topic C: Constants ... 4-24
Topic D: Prewritten imported methods... 4-32
Unit summary: Advanced object concepts .. 4-41

Input and selection 5-1
Topic A: Keyboard input ... 5-2
Topic B: Control flow statements... 5-14
Topic C: Operators ... 5-35
Unit summary: Input and selection ... 5-43

Loops 6-1
Topic A: Loop structures ... 6-2
Topic B: For and nested loops .. 6-15
Unit summary: Loops.. 6-23

Characters and strings 7-1
Topic A: Strings... 7-2
Topic B: The StringBuffer class ... 7-16
Unit summary: Characters and strings .. 7-22

Arrays 8-1
Topic A: Introduction to arrays.. 8-2

ii Java Programming, Second Edition (Updated)

Topic B: Arrays of objects ... 8-10
Topic C: Searching an array... 8-17
Unit summary: Arrays .. 8-25

Array manipulations 9-1
Topic A: Manipulating an array .. 9-2
Topic B: Sorting arrays .. 9-19
Topic C: Two-dimensional arrays.. 9-31
Unit summary: Array manipulations .. 9-35

Applets 10-1
Topic A: Applets and HTML documents ... 10-2
Topic B: Applets with Swing components... 10-9
Unit summary: Applets .. 10-21

Event-driven programming 11-1
Topic A: Event-driven programming in applets... 11-2
Topic B: Life cycle of a Swing applet... 11-16
Topic C: Enhancing a Swing applet .. 11-25
Unit summary: Event-driven programming... 11-36

Graphics 12-1
Topic A: Basic graphic methods .. 12-2
Topic B: More about graphics... 12-11
Topic C: Drawing objects ... 12-36
Topic D: Adding sound, images, and animations.. 12-46
Unit summary: Graphics .. 12-58

Introduction to inheritance 13-1
Topic A: Inheritance... 13-2
Topic B: Superclasses ... 13-13
Topic C: Information hiding and protection.. 13-30
Unit summary: Introduction to inheritance.. 13-39

Advanced inheritance concepts 14-1
Topic A: Abstract classes ... 14-2
Topic B: Array of objects and comparing objects... 14-15
Topic C: Interfaces and packages.. 14-24
Unit summary: Advanced inheritance concepts... 14-30

Swing components 15-1
Topic A: Frames ... 15-2
Topic B: Swing event listeners.. 15-11
Unit summary: Swing components .. 15-38

Layout managers and events 16-1
Topic A: Layout managers and JPanel ... 16-2
Topic B: Events and event handling.. 16-22
Unit summary: Layout managers and events... 16-40

Exception handling 17-1
Topic A: Exceptions ... 17-2
Topic B: Error handling methods.. 17-18

 iii

Topic C: Call stack and user-defined exceptions... 17-32
Unit summary: Exception handling.. 17-39

File input and output 18-1
Topic A: Files and streams ... 18-2
Topic B: Input and output.. 18-16
Unit summary: File input and output ... 18-42

Multithreading and animations 19-1
Topic A: Multithreading ... 19-2
Topic B: Animations.. 19-19
Unit summary: Multithreading and animations.. 19-49

Course summary S-1
Topic A: Course summary ...S-2
Topic B: Continued learning after class ..S-6

Glossary G-1

Index I-1

iv Java Programming, Second Edition (Updated)

v

J a v a P r o g r a m m i n g
Second Edition (Updated)
Introduction

After reading this introduction, you will know
how to:

A Use ILT Series training manuals in
general.

B Use prerequisites, a target student
description, course objectives, and a skills
inventory to properly set students’
expectations for the course.

C Set up a classroom to teach this course.

D Get support for setting up and teaching this
course.

vi Java Programming, Second Edition (Updated)

Topic A: About the manual

ILT Series philosophy
Our goal is to make you, the instructor, as successful as possible. To that end,
our training manuals facilitate students’ learning by providing structured interaction
with the software itself. While we provide text to help you explain difficult concepts,
the hands-on activities are the focus of our courses. Leading the students through these
activities will teach the skills and concepts effectively.

We believe strongly in the instructor-led classroom. For many students, having thinking,
feeling instructor in front of them will always be the most comfortable way to learn.
Because the students’ focus should be on you, our manuals are designed and written to
facilitate your interaction with the students, and not to call attention to manuals
themselves.

We believe in the basic approach of setting expectations, then teaching, and providing
summary and review afterwards. For this reason, lessons begin with objectives and end
with summaries. We also provide overall course objectives and a course summary to
provide both an introduction to and closure on the entire course.

Our goal is your success. We encourage your feedback in helping us to continually
improve our manuals to meet your needs.

Manual components
The manuals contain these major components:

• Table of contents
• Introduction
• Units
• Course summary
• Glossary
• Index

Each element is described below.

Table of contents

The table of contents acts as a learning roadmap for you and the students.

Introduction

The introduction contains information about our training philosophy and our manual
components, features, and conventions. It contains target student, prerequisite,
objective, and setup information for the specific course. Finally, the introduction
contains support information.

 Introduction vii

Units

Units are the largest structural component of the actual course content. A unit begins
with a title page that lists objectives for each major subdivision, or topic, within the unit.
Within each topic, conceptual and explanatory information alternates with hands-on
activities. Units conclude with a summary comprising one paragraph for each topic, and
an independent practice activity that gives students an opportunity to practice the skills
they’ve learned.

The conceptual information takes the form of text paragraphs, exhibits, lists, and tables.
The activities are structured in two columns, one telling students what to do, the other
providing explanations, descriptions, and graphics. Throughout a unit, instructor notes
are found in the left margin.

Course summary

This section provides a text summary of the entire course. It is useful for providing
closure at the end of the course. The course summary also indicates the next course in
this series, if there is one, and lists additional resources students might find useful as
they continue to learn about the software.

Glossary

The glossary provides definitions for all of the key terms used in this course.

Index

The index at the end of this manual makes it easy for you and your students to find
information about a particular software component, feature, or concept.

viii Java Programming, Second Edition (Updated)

Manual conventions
We’ve tried to keep the number of elements and the types of formatting to a minimum
in the manuals. We think this aids in clarity and makes the manuals more classically
elegant looking. But there are some conventions and icons you should know about.

Instructor note/icon Convention Description
 Italic text In conceptual text, indicates a new term or feature.

 Bold text In unit summaries, indicates a key term or concept. In an
independent practice activity, indicates an explicit item
that you select, choose, or type.

 Code font Indicates code or syntax.

 Longer strings of ►
 code will look ►
 like this.

In the hands-on activities, any code that’s too long to fit
on a single line is divided into segments by one or more
continuation characters (►). This code should be entered
as a continuous string of text.

Instructor notes. In the left margin, provide tips, hints, and warnings for
the instructor.

 Select bold item In the left column of hands-on activities, bold sans-serif
text indicates an explicit item that you select, choose, or
type.

 Keycaps like e Indicate a key on the keyboard you must press.

Warning icon. Warnings prepare instructors for potential classroom
management problems.

Tip icon. Tips give extra information the instructor can share with
students.

Setup icon. Setup notes provide a realistic business context for
instructors to share with students, or indicate additional
setup steps required for the current activity.

Projector icon. Projector notes indicate that there is a PowerPoint slide
for the adjacent content.

 Introduction ix

Hands-on activities
The hands-on activities are the most important parts of our manuals. They are divided
into two primary columns. The “Here’s how” column gives short directions to the
students. The “Here’s why” column provides explanations, graphics, and clarifications.
To the left, instructor notes provide tips, warnings, setups, and other information for the
instructor only. Here’s a sample:

Do it! A-1: Creating a commission formula

 Here’s how Here’s why

 1 Open Sales This is an oversimplified sales compensation
worksheet. It shows sales totals, commissions,
and incentives for five sales reps.

Take the time to make
sure your students
understand this
worksheet. We’ll be here a
while. 2 Observe the contents of cell F4

The commission rate formulas use the name
“C_Rate” instead of a value for the commission
rate.

For these activities, we have provided a collection of data files designed to help students
learn each skill in a real-world business context. As students work through the activities,
they will modify and update these files. Of course, they might make a mistake and,
therefore, want to re-key the activity starting from scratch. To make it easy to start over,
students will rename each data file at the end of the first activity in which the file is
modified. Our convention for renaming files is to add the word “My” to the beginning
of the file name. In the above activity, for example, students are using a file called
“Sales” for the first time. At the end of this activity, they would save the file as “My
sales,” thus leaving the “Sales” file unchanged. If students make mistakes, they can start
over using the original “Sales” file.

In some activities, however, it may not be practical to rename the data file. Such
exceptions are indicated with an instructor note. If students want to retry one of these
activities, you will need to provide a fresh copy of the original data file.

x Java Programming, Second Edition (Updated)

PowerPoint presentations
Each unit in this course has an accompanying PowerPoint presentation. These slide
shows are designed to support your classroom instruction while providing students with
a visual focus. Each one begins with a list of unit objectives and ends with a unit
summary slide. We strongly recommend that you run these presentations from the
instructor’s station as you teach this course. A copy of PowerPoint Viewer is included,
so it is not necessary to have PowerPoint installed on your computer.

The ILT Series PowerPoint add-in

The CD also contains a PowerPoint add-in that enables you to do two things:
• Create slide notes for the class
• Display a control panel for the Flash movies embedded in the presentations

To load the PowerPoint add-in:
1 Copy the Course_ILT.ppa file to a convenient location on your hard drive.
2 Start PowerPoint.
3 Choose Tools, Macro, Security to open the Security dialog box. On the Security

Level tab, select Medium (if necessary), and then click OK.
4 Choose Tools, Add-Ins to open the Add-Ins dialog box. Then, click Add New.
5 Browse to and select the Course_ILT.ppa file, and then click OK. A message

box will appear, warning you that macros can contain viruses.
6 Click Enable Macros. The Course_ILT add-in should now appear in the

Available Add-Ins list (in the Add-Ins dialog box). The “x” in front of
Course_ILT indicates that the add-in is loaded.

7 Click Close to close the Add-Ins dialog box.

After you complete this procedure, a new toolbar will be available at the top of the
PowerPoint window. This toolbar contains a single button labeled “Create SlideNotes.”
Click this button to generate slide notes files in both text (.txt) and Excel (.xls) format.
By default, these files will be saved to the folder that contains the presentation. If the
PowerPoint file is on a CD-ROM or in some other location to which the SlideNotes files
cannot be saved, you will be prompted to save the presentation to your hard drive and
try again.

When you run a presentation and come to a slide that contains a Flash movie, you will
see a small control panel in the lower-left corner of the screen. You can use this panel to
start, stop, and rewind the movie, or to play it again.

 Introduction xi

Topic B: Setting student expectations
Properly setting students’ expectations is essential to your success. This topic will help
you do that by providing:

• Prerequisites for this course
• A description of the target student at whom the course is aimed
• A list of the objectives for the course
• A skills assessment for the course

Course prerequisites
Students taking this course should be familiar with personal computers and the use of a
keyboard and a mouse. Furthermore, this course assumes that students have no
programming experience.

Target student
The target students are programmers or Web developers who want to use Java. The
students will be able to develop applications and applets by using the Java programming
language. They will also be able to build visually interesting GUI and Web-based
applications.

Course objectives
You should share these overall course objectives with your students at the beginning of
the day. This will give the students an idea about what to expect, and will also help you
identify students who might be misplaced. Students are considered misplaced when they
lack the prerequisite knowledge or when they already know most of the subject matter
to be covered.

After completing this course, students will know how to:
• Describe the basic and object-oriented programming concepts, the Java

platform, and types of Java programs, as well as how to install and configure the
Java SDK.

• Use constants, variables, and various data types.
• Create and use methods, classes, and instantiate objects from classes.
• Define blocks and scope of a variable, overload methods and constructors, and

work with constants.
• Accept keyboard input, use the JOptionPane class, draw flowcharts and make

decisions by using if...else and switch statements, use AND, OR, conditional,
and NOT operators, and their order of precedence.

• Use while loops, do…while loops, shortcut arithmetic operators, for loops
and, nested loops.

• Manipulate characters and use String methods and the StringBuffer class.
• Declare, initialize an array, declare and create an array of objects, and search an

array.

xii Java Programming, Second Edition (Updated)

• Pass arrays to methods, use the length field, create an array of strings, sort
arrays, and create two-dimensional and multidimensional arrays.

• Create HTML documents to run applets containing AWT components and create
applets with Swing components.

• Define event-driven programming and handle events with Swing components,
identify the life cycle of an applet, and enhance Swing applets.

• Implement basic graphic methods, draw lines, rectangles, ovals, arcs and
polygons, and add sound, images, and animations to Swing applets.

• Implement inheritance and extend classes, override superclass methods, and use
information hiding and protection.

• Create abstract classes and use dynamic method binding, create an array of
objects, compare objects, and create interfaces and packages.

• Use the JFrame and JPanel class, use the Swing event listeners and Swing
components.

• Use layout managers, JPanel and AWTEvent class methods, and handle mouse
events.

• Throw and catch exceptions, specify and handle exceptions, and trace and create
your own exceptions.

• Use the File class and streams; write to and read from a file.
• Implement multithreading, create and use animations.

 Introduction xiii

Skills inventory
Use the following form to gauge students’ skill level entering the class (students have
copies in the introductions of their student manuals). For each skill listed, have students
rate their familiarity from 1 to 5, with five being the most familiar. Emphasize that this
is not a test. Rather, it is intended to provide students with an idea of where they’re
starting from at the beginning of class. If a student is wholly unfamiliar with all the
skills, he or she might not be ready for the class. A student who seems to understand all
of the skills, on the other hand, might need to move on to the next course in the series.

Skill 1 2 3 4 5

Describing basic and object-oriented programming
concepts

Describing the Java platform and types of Java programs

Installing and configuring the Java SDK

Writing a simple Java program

Using constants and variables

Using various data types

Creating and using methods

Creating classes and instantiating objects from classes

Defining blocks and scope of a variable

Overloading methods and constructors

Working with constants

Accepting keyboard input and using the JOptionPane class

Drawing flowcharts and making decisions by using if...else
and switch statements

Using AND, OR, conditional, and NOT operators, and
their order of precedence

Using while and do…while loops, and discussing shortcut
arithmetic operators

Using for and nested loops

Manipulating characters and using String methods

Using the StringBuffer class

xiv Java Programming, Second Edition (Updated)

Skill 1 2 3 4 5

Declaring and initializing an array

Declaring and creating an array of objects

Searching an array

Passing arrays to methods, using the length field, and
creating arrays of strings

Sorting arrays

Creating two-dimensional and multidimensional arrays

Creating an HTML document to run an applet containing
AWT components

Creating an applet with Swing components

Defining event-driven programming and handling events
with Swing components

Identifying the life cycle of an applet

Enhancing the Swing applet

Implementing basic graphic methods

Creating various graphic objects

Drawing lines, rectangles, ovals, arcs and polygons

Adding sound, images, and animations to Swing applets

Implementing inheritance and extend classes

Overriding superclass methods

Using information hiding and protection

Creating abstract classes and use dynamic method binding

Creating an array of objects and comparing objects

Creating interfaces and packages

Using the JFrame and JPanel class

Using the Swing event listeners and Swing components

 Introduction xv

Skill 1 2 3 4 5

Use layout managers and JPanel

Using AWTEvent class methods and handling mouse
events

Throwing and catching exceptions

Specifying and handling exceptions

Tracing and creating your own exceptions

Using the File class and streams

Writing to and reading from a file

Implementing multithreading

Creating and using animations

xvi Java Programming, Second Edition (Updated)

Topic C: Classroom setup
All our courses assume that each student has a personal computer to use during the
class. Our hands-on approach to learning requires they do. This topic gives information
on how to set up the classroom to teach this course. It includes minimum requirements
for the students’ personal computers, setup information for the first time you teach the
class, and setup information for each time that you teach after the first time you set up
the classroom.

Student computer requirements
Each student’s personal computer should have:

Hardware
• A keyboard and a mouse
• A Pentium II-class processor or higher
• 128MB of RAM
• At least 4GB hard disk space
• 1.44 MB 3½-inch floppy disk drive
• CD-ROM drive supported by Windows 2000
• A monitor capable of 256 colors at 800×600 resolution
• Internet access, if you want to download the Student Data files from

www.courseilt.com/instructor_tools.html

Software
• Windows 2000 Professional (with Service Pack 2 or later), Microsoft Windows

NT (with Service Pack 5 or later), or Windows XP
• Java 2 SDK v1.4.1 or later
• Internet Explorer 6.0 or later
• Notepad

First-time setup instructions
The first time you teach this course, you will need to perform the following steps to set
up each student computer.

1 Install Microsoft Windows 2000 Professional according to the software
manufacturer’s instructions. You can also use Microsoft Windows XP
Professional. Screen shots in this course were taken using Microsoft Windows
XP Professional and students’ screens might look somewhat different.

2 Install Java 2 SDK v1.4.1 according to the software manufacturer’s instructions.
3 Install Internet Explorer 6.0.
4 Install all other software mentioned in the software section as per the

manufacturer’s instructions.

 Introduction xvii

5 Download the Student Data files for the course. You can download the data
directly to student machines, to a central location on your own network, or to a
disk.
a Connect to www.courseilt.com/instructor_tools.html.
b Click the link for Java/J++ to display a page of course listings, and then click

the link for Java Programming, Second Edition (Updated).
c Click the link for downloading the Student Data files, and follow the

instructions that appear on your screen.

Setup instructions for every class
Every time you teach this course, you will need to perform the following steps to set up
each student computer.

1 Delete the contents of the Student Data folder, if necessary. (If this is the first
time you are teaching the course, create a folder named Student Data at the root
of the hard drive.)

2 Copy the data files to the Student Data folder. (See the download instructions in
the preceding section.)

xiii Java Programming, Second Edition (Updated)

Topic D: Support
Your success is our primary concern. If you need help setting up this class or teaching a
particular unit, topic, or activity, please don’t hesitate to get in touch with us.

Contacting us
Please contact us through our Web site, www.axzopress.com. You will need to provide
the name of the course, and be as specific as possible about the kind of help you need.

Instructor’s tools
Our Web site provides several instructor’s tools for each course, including course
outlines and answers to frequently asked questions. To download these files, go to
www.axzopress.com. Then, under Downloads, click Instructor-Led Training and
browse our subject categories.

1–1

U n i t 1
Getting started

Unit time: 75 minutes

Complete this unit, and you will know how to:

A Describe basic and object-oriented
programming concepts.

B Describe the Java platform and identify
types of Java programs.

C Install and configure the Java SDK.

D Write a simple Java program and add
comments.

1–2 Java Programming, Second Edition (Updated)

Topic A: Programming basics
Explanation Before you learn about the Java programming language, you must have a clear

understanding of basic programming—concepts, specifically, object-oriented
programming concepts.

Programming concepts

 A computer program is a set of instructions that you write to tell a computer what to do.
Computers are constructed from circuitry consisting of small on/off switches. You can
write a computer program by writing something similar to the lines below:

first switch—on
second switch—off
third switch—off
fourth switch—on

Your program could continue for several thousand switches. A program written in this
style is written in machine language, the most basic circuitry-level language. The main
problem with this approach lies in keeping track of the many switches involved in
programming a task. Another problem with this approach includes difficulties in
discovering the errant switch or switches if the program does not operate as expected.
Additionally, the number and location of switches varies from computer to computer,
which means that you would need to customize a machine language program for every
type of machine on which you want the program to run.

Fortunately, programming has evolved into an easier task because of the development
of high-level programming languages. A high-level programming language allows you
to use a vocabulary of reasonable terms such as “read,” “write,” or “add,” instead of the
sequences of on and off switches that perform these tasks. High-level languages also
allow you to assign intuitive names to areas of computer memory, such as
“hoursWorked” or “rateOfPay,” rather than having to remember the memory locations
(switch numbers) of those values.

Each high-level language has its own syntax, or rules of the language. For example,
depending on the language, you might use the verb “print” or “write” to produce output.
All languages have a specific, limited vocabulary and a specific set of rules for using
that vocabulary.

 Programmers use a computer program called a compiler to translate their high-level
language statements into machine code. The compiler issues an error message each time
the programmer uses the programming language incorrectly. Subsequently, the
programmer can correct the error and attempt another translation by re-compiling the
program. Some languages use an interpreter to read the compiled code line by line at
run time. Java programs are both compiled and interpreted.

A Java interpreter can run either as a stand-alone program or as part of a Web browser,
such as Netscape Navigator or Microsoft Internet Explorer. When the Java interpreter
runs in a Web browser, it can be invoked automatically to run applets in a Web page.
The ability to run applets in a Web browser is one feature that distinguishes Java from
other programming languages.

When you are learning a computer programming language, such as the Java
programming language, C++, or Visual Basic, you need to learn the vocabulary and
syntax rules for that language. In addition to learning the correct syntax for a particular
language, a programmer must also understand computer programming logic.

 Getting started 1–3

The logic behind any program involves executing the various statements and procedures
in the correct order to produce the desired results. For example, you would not write
statements to tell the computer program to process data until the program had properly
read the data. Similarly, you might be able to use a computer language’s syntax
correctly, but be unable to execute a logically constructed, workable program. Examples
of logical errors include multiplying two values when you meant to divide them, or
producing output prior to obtaining the appropriate input.

Do it! A-1: Discussing programming basics

 Questions and answers
 1 How do high-level languages make programming easier?

By allowing the programmer to use a vocabulary of intuitive terms.

 2 What defines the vocabulary rules of a programming language?

Syntax

 3 What does computer programming logic refer to?

The logic behind any program involves executing the various statements and procedures in
the correct order to produce the desired results.

 4 Is Java source code compiled or interpreted?

Both. Java is first compiled, and then interpreted.

 5 What is one feature that distinguishes Java from other programming languages?

The ability to run applets in a Web browser

1–4 Java Programming, Second Edition (Updated)

Procedural and object-oriented programming
Explanation There are two popular approaches to writing computer programs: procedural

programming and object-oriented programming.

Procedural programming

 In procedural programming, the individual operations used in a computer program are
often grouped into logical units called procedures. In a procedural program, one
procedure follows another from beginning to the end. You write all of the procedures
for a program, and then when the program executes, each procedure takes place in order
based on the program’s logic.

One example of a procedural program is a series of four or five comparisons and
calculations that together determine an individual’s federal withholding tax value. These
comparisons and calculations might be grouped as a procedure named
calculateFederalWithholding. A procedural program defines the variable
memory locations, and then calls a series of procedures to input, manipulate, and output
the values stored in those locations. A single procedural program often contains
hundreds of variables and thousands of procedure calls.

Object-oriented programming

Object-oriented programming is an extension of procedural programming that takes a
slightly different approach to writing computer programs. Writing object-oriented
programs involves both creating objects and creating applications that use those objects.
Objects often interrelate with other objects, and once created, objects can be reused to
develop new programs. Thinking in an object-oriented manner involves envisioning
program components as objects that are similar to concrete objects in the real world;
then you can manipulate the objects to achieve a desired result.

If you have ever used a computer that uses a command-line operating system (such as
DOS), and if you have also used a graphical user interface, or GUI (such as Windows),
then you are familiar with the difference between procedural and object-oriented
programs. If you want to move several files from a floppy disk to a hard disk, you can
use either a typed command at a prompt or command line, or you can use a mouse in a
graphical environment to accomplish the task. The difference lies in whether you issue a
series of commands in sequence to move the three files, or if you drag icons
representing the files from one screen location to another, much as you would
physically move paper files from one file cabinet to another in your office. You can
move the same three files using either operating system, but the GUI system allows you
to manipulate the files like their real-world paper counterparts. In other words, the GUI
system allows you to treat files as objects.

Object-oriented concepts

 Objects both in the real world and in object-oriented programming are made up of states
and methods. The states of an object are commonly referred to as its attributes.
Attributes are the characteristics that define an object as part of a class. For example,
some of your automobile’s attributes are its make, model, year, and purchase price.
Other attributes include whether the automobile is currently running, its gear, its speed,
and whether it is dirty. All automobiles possess the same attributes but not, of course,
the same values for those attributes. Similarly, your dog has the attributes of its breed,
name, age, and whether his or her shots are current.

 Getting started 1–5

The term class describes a group or collection of objects with common properties. An
existing object of a class is called an instance. Therefore, your red Chevrolet sedan with
the dent can be considered an instance of the class that is made up of all automobiles,
and your golden retriever named Goldie is an instance of the class that is made up of all
dogs. Thinking of items as instances of a class allows you to apply your general
knowledge of the class to individual members of the class. A particular instance of an
object takes on, or inherits, its attributes from a more general category. If a general class
Dog has defined attributes and methods, they can be passed on to a specific class
Golden Retriever Dog with minimal programming effort. If your friend purchases an
automobile, you know it has a model name, and if your friend gets a dog, you know the
dog has a breed. You might not know the exact contents of your friend’s automobile, its
current state or her automobile’s speed or her dog’s shots, but you do know what
attributes exist for the Automobile and Dog classes. Similarly, in a GUI operating
environment, you expect each component to have specific, consistent attributes, such as
a menu bar and a title bar, because each component inherits these attributes as a member
of the general class of GUI components.

Programmers using Java begin their class names with an uppercase letter. Thus, the
class that defines the attributes and methods of an automobile would probably be named
Automobile, and the class for dogs would probably be named Dog. However, following
this convention is not required to produce a workable program.

Besides attributes, objects can use methods to accomplish tasks. A method is a self-
contained block of program code. Automobiles, for example, can move forward and
backward. They can also be filled with gasoline or be washed, both of which can be
programmed as methods to change some of their attributes. Methods exist for
ascertaining certain attributes, such as the current speed of an automobile and the
current status of its gas tank. Similarly, a dog can walk or run, eat food, and get a bath,
and there are methods to determine how hungry the dog is. GUI operating system
components can be maximized, minimized, and dragged. Like procedural programs,
object-oriented programs have variables (attributes) and procedures (methods), but the
attributes and methods are encapsulated into objects that are then used much like real-
world objects.

Encapsulation refers to the hiding of data and methods within an object. Encapsulation
provides the security that keeps data and methods safe from inadvertent changes.
Programmers sometimes refer to encapsulation as using a “black box,” or a device that
you can use without regard to the internal mechanisms. A programmer gets to access
and use the methods and data contained in the black box but cannot change them.

If an object’s methods are well written, the user is unaware of the low-level details of
how the methods are executed, and the user must simply understand the interface or
interaction between the method and the object. For example, if you can fill your
automobile with gasoline, it is because you understand the interface between the gas
pump nozzle and the vehicle’s gas tank opening. You do not need to understand how the
pump works mechanically or where the gas tank is located inside your vehicle. If you
can read your speedometer, it does not matter how the displayed figure is calculated. As
a matter of fact, if someone produces a superior, more accurate speed-determining
device and inserts it in your automobile, you do not have to know or care how it
operates, as long as your interface remains the same. The same principles apply to well-
constructed objects used in object-oriented programs.

1–6 Java Programming, Second Edition (Updated)

Do it! A-2: Discussing object-oriented programming

 Questions and answers
 1 In procedural programming, you define the ________________________.

sequences of actions or procedures

 2 How are classes and instances related?

Classes define entities in the abstract; instances denote specific objects that conform to the
class specification.

 3 What is encapsulation?

The hiding of data and methods within an object

 Getting started 1–7

Topic B: The Java platform
Explanation Java technology was developed by Sun Microsystems as both an object-oriented

programming language and a platform.

A platform is the hardware or software environment in which a program runs. Some of
the most popular platforms include Windows, Linux, Solaris, and Mac. Most platforms
can be described as a combination of the operating system and hardware. The Java
platform differs from most other platforms in that it is a software-only platform that
runs on top of other hardware-based platforms.

 Java is used both for general-purpose business programs and for interactive World
Wide Web-based Internet programs. Some of the advantages that have made the Java
programming language so popular in recent years are its security features, and the fact
that it is architecturally neutral, which means that you can use the Java programming
language to write a program that will run on any platform or operating system.

 The Java platform has two components:
• The Java application programming interface (API)
• The Java Virtual Machine (JVM)

The Java API is a large collection of ready-made software components that provide
many useful capabilities, such as GUI widgets. The Java API is grouped into libraries of
related classes and interfaces; these libraries are known as packages.

The JVM is the base for the Java platform and is ported onto various hardware-based
platforms.

The Java environment
Java can be run on a wide variety of computers because Java does not execute
instructions on a computer directly. Instead, Java runs on a hypothetical computer
known as the Java Virtual Machine (JVM).

Exhibit 1-1: The Java environment

1–8 Java Programming, Second Edition (Updated)

The Java environment is shown in Exhibit 1-1. You can create a Java program by using
a standard text editor. The file containing the Java programming statements is also
known as the source code. The Java compiler converts the source code into machine-
independent bytecode. A program called the Java interpreter checks the bytecode and
executes the bytecode instructions line by line within the JVM. Because the Java
program is isolated from the native operating system, the Java program is insulated from
the particular hardware on which it is run. Because of this insulation, the JVM provides
security against intruders getting at your computer’s hardware through the operating
system.

In contrast, when using other programming languages, software vendors usually have to
produce multiple versions of the same product—a DOS version, Windows version,
Macintosh version, UNIX version, and so on—so all users can use the program. With
Java, one program version will run on all these platforms. It is the Java bytecode that
helps make “write once, run anywhere” possible. You can compile your program into
bytecode on any platform that has a Java compiler. The bytecode can then be run on any
implementation of the JVM. This means that as long as a computer has a JVM, the same
program written in Java can run on Windows 2000, a Solaris workstation, or on a Mac,
as shown in Exhibit 1-2.

Exhibit 1-2: Java write once, run anywhere

Program types

 There are three main types of programs you can write using Java:
• Applications run in the JVM installed on a computer system.
• Applets run in the JVM built into a Web browser.
• Servlets run in the JVM installed on a Web server.

While applets and applications usually have some kind of user interface coupled to
backend functionality, servlets only provide backend functionality. The user interface
for a servlet is usually an HTML form in a browser that invokes the servlet, but any
applet or application that opens a hypertext transfer protocol (HTTP) request can call a
servlet.

 Getting started 1–9

Java applications can be further subdivided into:
• Console applications, which support character output to a computer screen in a

DOS window
• Windowed applications, which create a GUI with elements such as menus,

toolbars, and dialog boxes

Advantages
Java is not as complicated as many other object-oriented languages. The Java
programming language is modeled after the C++ programming language. Although
neither language is “simple” to read or understand on first exposure, Java eliminates
some of the most difficult-to-understand features in C++, such as pointers and multiple
inheritance.

Do it! B-1: Discussing the Java platform

 Questions and answers
 1 Java is described at being architecturally neutral; what does this mean?

A Java program is compiled to a machine-independent bytecode. The bytecode can then be
interpreted on any implementation of the JVM, so the program can run on any platform or
operating system.

 2 What popular language was Java modeled after?

C++

 3 What are the three main types of Java programs?

Java applications, applets, and servlets

1–10 Java Programming, Second Edition (Updated)

Topic C: Installing Java
Explanation Before you can develop a Java program, you will need to download and install one of

the following Java 2 platforms from the Sun Microsystems Web site:
www.java.sun.com.

• Java 2 Platform Standard Edition (J2SE): This kit is necessary for developing

all applications, except those designed for consumer devices. J2SE comes
bundled with the compiler, a runtime environment, and the core APIs.

• Java 2 Platform, Enterprise Edition (J2EE): This packages includes an
application server, Web server, J2EE APIs, support for Enterprise JavaBeans,
Java Servlets API, and JavaServer Pages (JSP) technology. Use J2EE with the
J2SE.

• JavaServer Web Development Kit (JSWDK): If you are interested in writing
and testing servlets or JavaServer Pages, download this kit along with the J2SE
bundle. If you want to work with Enterprise JavaBeans, then you should
download the J2EE package instead.

• Java 2 Platform, Micro Edition (J2ME): If you are interested in developing
programs for Palm Pilots, screen phones, and other consumer devices, this kit
provides tools for compiling, deployment and device configuration, and APIs
that are specialized for each type of device.

The Java 2 software development kits (Java SDKs) include the APIs necessary for the
various types of programs you can develop with the Java programming language.

System requirements
The Java 2 SDK is supported on the following Microsoft platforms running on Intel
hardware:

• Windows 98 (1st or 2nd edition)
• Windows NT 4.0 (with Service Pack 5 or later)
• Windows ME
• Windows XP
• Windows 2000 (with Service Pack 2 or later)

Note: Trying to install the Java 2 SDK on a non-supported version of Windows or on a
machine that does not have a sufficiently up-to-date Service Pack will cause the installer
to generate the following warning:

We recommend that you do not install this Java Platform for the following reasons:
This Java Platform does not support the operating system or operating-system service
pack on this machine.

A Pentium 166 MHz or faster processor with at least 32 megabytes (MB) of physical
RAM is required to run graphic-based applications. Forty-eight MB of RAM is
recommended for applets running within a browser using the Java Plug-in product.
Running with less memory may cause disk swapping, which has a severe effect on
performance. Very large programs may require more RAM for adequate performance.

You should have 120 MB of free disk space before attempting to install the Java 2 SDK
software.

 Getting started 1–11

Installation instructions
To install the Java 2 platform, you will run the self-installing executable to unpack and
install the Java 2 SDK software bundle.

Note: After you install the Java 2 SDK software, you might need to reboot your system.

During installation, you must substitute the appropriate version number whenever you
see the following notation:

<version number>

For example, if you download the installer for version 1.4.1_03, the file name j2sdk-
1_4_1_<version number>-windows-i586.exe would be j2sdk-1_4_1_03-
windows-i586.exe.

Installation steps

 Use the following steps to install the Java 2 SDK software:
1 Check the download file size.
 If you save the self-installing executable to disk without running it from the

download page at the Java Software Web site, notice that its byte size is
provided on the download page. Once the download has completed, check that
you have downloaded the full, uncorrupted software file.

2 Uninstall any prior version of the Java 2 SDK.
 If you have previously installed another version of the Java 2 SDK, uninstall it.

Use the Microsoft Windows Add/Remove Programs utility, accessible from the
Control Panel (Click Start, then choose Settings, and then Control Panel).

3 Run the Java 2 SDK installer.
 Note: You must have administrative permissions in order to install the Java 2

SDK on Windows 2000 and XP.
 The file j2sdk-1_4_1_<version number>-windows-i586-i.exe is the Java 2 SDK

installer. If you downloaded it instead of running it directly from the Web site,
double-click the installers icon. Then follow the instructions the installer
provides. When done with the installation, you can delete the download file to
recover disk space.

4 Delete the downloaded file (optional).
 If you want to recover disk space, delete the file (or files) you originally

downloaded.

1–12 Java Programming, Second Edition (Updated)

Installed directory tree

The Java 2 SDK has the directory structure shown in Exhibit 1-3.

Exhibit 1-3: The Java 2 SDK directory structure

In addition, the Java Plug-in and Java Web Start will be automatically installed. Look
for a Java Web Start icon on your desktop. There will also be an entry for Java Web
Start in the Start menu.

Do it! C-1: Installing the Java 2 Platform Standard Edition

 Questions and answers
 1 What is the Web site where can you download the Java 2 platform?

www.java.sun.com

 2 During installation, what must you do whenever you see the following notation:
<version number>?

You must substitute the appropriate update version number for the notation.

 3 What is the first step you should take after downloading the Java 2 SDK software?

Once the download has completed, check that you have downloaded the full, uncorrupted
software file.

 4 How can you recover disk space after installing the Java 2 SDK software?

Delete the file (or files) you originally downloaded

 5 If you download and install j2sdk-1_4_1_04-windows-i586-i.exe to the root of
your C: drive, what would be the path to the bin directory?

C:\j2sdk1.4.1_04\bin

 Getting started 1–13

Setting the PATH variable
Explanation You can run the Java 2 SDK without setting the PATH variable. However, if you want

to be able to conveniently run the Java 2 SDK executables (javac.exe, java.exe,
javadoc.exe, etc.) from any directory without having to type the full path of the
command, then you should set the PATH variable. If you do not set the PATH variable,
you will need to specify the full path to the executable every time you run it, such as:

C:> \j2sdk1.4.1_<version number>\bin\javac First.java

 It is useful to set the PATH permanently so it will persist after rebooting. To set the
PATH permanently, you add the full path of the j2sdk1.4.1_<version number>\bin
directory to the PATH variable. Typically this full path looks something like the
following:

C:\j2sdk1.4.1_<version number>\bin

Setting the PATH variable on Windows NT, 2000, and XP

To set the PATH permanently:
1 Choose Start, Settings, Control Panel, and then double-click System or System

Tools.
2 On Windows NT, activate the Environment tab; on Windows 2000 activate the

Advanced tab and then click Environment Variables.
3 Select Path in the User Variables and click Edit.
4 Add the new path value to the end of the PATH statement. A typical value for

PATH is:
 C:\j2sdk1.4.1_<version number>\bin

 The PATH can be a series of directories separated by semi-colons (;). Windows
looks for programs in the PATH directories in order, from left to right. You
should have only one bin directory for a Java SDK in the path at a time (those
following the first are ignored), so if one is already present, you can update it to
your current version number.

5 Click OK.
6 Select Path in the System Variables and click Edit.
7 Add the Path value to the end of the PATH statement.
8 Click OK.
9 Click OK.
10 Click OK.

The new path takes effect in each new Command Prompt window you open after setting
the PATH variable.

1–14 Java Programming, Second Edition (Updated)

Setting the PATH variable on Windows 98

To set the PATH permanently, open the AUTOEXEC.BAT file and add or change the
PATH statement as follows:

1 Choose Start, Run, enter sysedit, and then click OK. The system editor opens
with several windows showing. Activate the window that is displays
AUTOEXEC.BAT.

2 Look for the PATH statement. (If you do not have one, add one.) If you are not
sure where to add the Path, add it to the end of the PATH statement. For
example, in the following PATH statement, we’ve added the bin directory at the
end:

 PATH C:\WINDOWS;C:\WINDOWS\COMMAND;C:\J2SDK1.4.1_►
 <version number>\BIN

3 To make the Path take effect in the current Command Prompt window, execute
the following:

 C:> c:\autoexec.bat

4 To find out the current value of your PATH, to see if it took effect, at the
command prompt, type:

 C:> path

Setting the PATH variable on Windows ME

To set the PATH permanently:
1 Choose Start, Programs, Accessories, System Tools, System Information. The

Microsoft Help and Support window appears.
2 Choose Tools, System Configuration.
3 Activate the Environment tab, select PATH, and click Edit.
4 Look for the PATH statement. (If you do not have one, add one.) If you are not

sure where to add the Path, add it to the end of the PATH statement. For
example, in the following PATH statement, we have added the bin directory at
the end:

 PATH C:\WINDOWS;C:\WINDOWS\COMMAND;C:\J2SDK1.4.1_►
 <version number>\BIN

5 After you have added the location of the SDK to your PATH, save the changes
and reboot your machine when prompted.

Uninstalling the Java 2 SDK
If you want to uninstall the Java 2 SDK, use the Add/Remove Programs utility in the
Windows Control Panel. As an alternative method, if you still have the original
installation program that you used to install the Java 2 SDK, you can double-click it to
launch an uninstall program.

 Getting started 1–15

Do it! C-2: Setting the PATH variable on Windows 2000

 Here’s how Here’s why
 1 Click Start To set PATH variables.

 Choose Settings,
Control Panel

 Double-click System To open the System Properties dialog box.

 2 Activate the Advanced tab

 Click Environment
Variables

To open the Environment Variables dialog box.

 3 In the User variables list, select
Path

 Click Edit To open the Edit User Variable dialog box. You
will edit the User Path value.

 4 At the end of the PATH
statement, enter your Path value

A typical value for PATH is:

 C:\j2sdk1.4.1_<version number>\bin

You should have only one bin directory for a
Java SDK in the path at a time (those following
the first are ignored), so if one is already present,
you can update it to j2sdk1.4.1_<version
number>\bin.

 5 Click OK To close the Edit User Variable dialog box.

 6 In the System variables list, select
Path

 Click Edit To open the Edit System Variable dialog box.
You will edit the Path value.

 7 At the end of the PATH
statement, enter your Path value

To permanently add the Path value to the PATH
statement.

 8 Click OK To close the Edit System Variable dialog box.

 9 Click OK To close the Environment Variables dialog box.

 10 Click OK To close the System Properties dialog box.

1–16 Java Programming, Second Edition (Updated)

Topic D: Language syntax and conventions
Explanation At first glance, even the simplest Java program involves a fair amount of confusing

language syntax and conventions.

Syntax basics
The best way to begin learning Java syntax is to consider a short simple program. The
program shown in Exhibit 1-4 is written on seven lines, and its only task is to print
“First Java program” on the screen.

Exhibit 1-4: Printing a string

The following statement does the actual work in this program:
System.out.println("First Java program");

Notice that this statement ends with a semicolon. All Java programming language
statements end with a semicolon.

 The text “First Java program” is a literal string of characters; that is, it is a series of
characters that will appear exactly as entered. Any literal string in Java appears between
double quotation marks, as opposed to single quotation marks as in ‘First Java
program’. Even though code might wrap to multiple lines, the literal string should not be
broken by a hard return.

The string “First Java program” appears within parentheses because the string is an
argument to a method. Arguments to methods always appear within parentheses.

Arguments consist of information that a method requires to perform its task. For
example, you might place a catalog order with a company that sells sporting goods.
Processing a catalog order is a method that consists of a set of standard procedures.
However, each catalog order requires information such as which item number you are
ordering and the quantity of the item desired; this information can be considered the
order’s argument. If you order two of item 5432 from a catalog, you expect different
results than if you order 1000 of item 9008. Likewise, if you pass the argument “Happy
Holidays” to a method, you expect different results than if you pass the argument “First
Java program”.

Within the statement System.out.println("First Java program");, the
method to which you are passing “First Java program” is named println(). The
println() method prints a line of output on the screen, positions the insertion point on
the next line, and stands ready for additional output.

 Getting started 1–17

Syntax convention: Method names are usually followed by parentheses, as in
println(), so you can distinguish method names from variable names.

Within the statement System.out.println("First Java program");, out is an
object. The out object represents the screen. Several methods, including println(),
are available with the out object. Of course, not all objects have a println() method
(for instance, you can not print to a keyboard, to your automobile, or to your dog), but
the creators of the Java platform assumed you would want to display output on a screen.
Therefore, the out object was created along with a method named println().

The print() method is similar to the println() method. With println(), after the
message prints, the insertion point appears on the following line. With print(), the
insertion point does not advance to a new line; it remains on the same line as the output.

Within the statement System.out.println("First Java program");, System
is a class. Therefore, System defines the attributes of a collection of similar “System”
objects, just as the Dog class defines the attributes of a collection of similar “Dog”
objects. One of the System objects is out. (You can probably guess that another object
is in, and that it represents an input device.)

Syntax rule: Java is case sensitive; the class named System is a completely different
class from one named system, SYSTEM, or even sYsTeM.

The dots (periods) in the statement System.out.println("First Java
program"); are used to separate the names of the class, object, and method. You will
use this same class-dot-object-dot-method format repeatedly in your Java programs.

The statement that prints the string “First Java program” is embedded in the program
shown in Exhibit 1-4.

1–18 Java Programming, Second Edition (Updated)

Java classes

Everything that you use within a Java program must be part of a class. When you write
public class First, you are defining a class named First. You can define a Java
class using any name or identifier, as long as it meets the following requirements:

• A class name must begin with a letter of the alphabet (which includes any non-

English letter, such as α or π), an underscore, or a dollar sign.
• A class name can contain only letters, digits, underscores, or dollar signs.
• A class name cannot be a Java programming language reserved keyword, such

as public or class. Exhibit 1-5 shows a list of reserved keywords in Java
programming language.

• A class name cannot be one of the following values: true, false, or null.

Exhibit 1-5: Reserved keywords

Tip: Java is based on Unicode, which is an international system of character
representation. The term letter indicates English-language letters, as well as characters
from Arabic, Greek, and other alphabets.

A standard convention in Java is to begin class names with an uppercase letter and
employ other uppercase letters as needed to improve readability. Following are some
valid and conventional class names that you can use while programming in Java:

 Class name Description
 Employee Begins with an uppercase letter

 UnderGradStudent Begins with an uppercase letter, contains no spaces, and
emphasizes each new word with an initial uppercase letter

 InventoryItem Begins with an uppercase letter, contains no spaces, and
emphasizes the second word with an initial uppercase letter

 Budget2004 Begins with an uppercase letter and contains no spaces

You should follow established conventions for the Java programming language so your
programs are easy for other programmers to interpret and follow.

 Getting started 1–19

Following is a list of some unconventional class names that you should not use while
programming in Java:

 Class name Why you should not use it
 Undergradstudent New words are not indicated with initial uppercase letters, so

the text is difficult to read.

 Inventory_Item The underscore is not commonly used to indicate new words.

 BUDGET2004 The text appears as all uppercase letters.

Following is a list of some illegal class names that cannot be used while programming
in Java:

 Class name Why you cannot use it
 An employee The space character is illegal.

 Inventory Item The space character is illegal.

 Class Class is a reserved word.

 2001Budget Class names cannot begin with a digit.

 phone# The # symbol is not allowed.

In the program shown in Exhibit 1-4, the line public class First contains the
keyword class, which identifies First as a class. The reserved word public is an
access modifier.

 An access modifier defines the circumstances under which a class can be accessed. Public
access is the most liberal type of access.

You enclose the contents of all classes within curly braces ({ and }). A class can contain
any number of data items and methods. In the program, the class First contains only one
method within its curly braces. The name of the method is main(), and the main()
method contains its own set of parentheses and only one statement—the println()
statement.

Note: In general, white space is optional in Java. White space is any combination of
spaces, tabs, and carriage returns (blank lines). However, you cannot use white space
within any identifier or keyword. You can insert white space between words or lines in
your program code by typing spaces, tabs, or blank lines because the compiler will
ignore these extra spaces. You should use white space to organize your program code
and make it easier to read.

1–20 Java Programming, Second Edition (Updated)

For every opening curly brace ({) in a Java program, there must be a corresponding closing
curly brace (}). The placement of the opening and closing curly braces is not important to the
compiler.

Usually, if you vertically align each pair of opening and closing curly braces in your code, it
will be easier to read. The following code uses white space and vertically aligns the curly
braces:

public static void main(String[] args)
{
 System.out.println("First Java program");
}

The main() method

The method header for the main() method is quite complex. In the method header
public static void main(String[] args), the word public is an access
modifier, just as it is when you defined the First class. In the English language, the word
static means showing little change, or stationary. In the Java programming language, the
reserved keyword static makes sure that main() is accessible even though no objects
of the class exist. It also indicates that every member created for the First class will have
an identical, unchanging main() method. Within the Java programming language,
static also implies uniqueness. Only one main() method for the First class will ever
be stored in the memory of the computer. Of course, other classes eventually might have
their own, different main() methods.

In English, the word void means empty. When the keyword void is used in the main()
method header, it does not indicate that the main() method is empty, but rather, that
the main() method does not return any value when it is called. This does not mean that
main() does not produce output—in fact, the method does. The main() method does
not send any value back to any other method that might use it.

Not all classes have a main() method; in fact many do not. However, all Java
applications must include a method named main(), and most Java applications have
additional methods. When you execute a Java application, the compiler always executes
the main() method first.

In the method header public static void main(String[] args), you already
might recognize that the contents between the parentheses, (String[] args), must
represent an argument passed to the main() method, just as the string “First Java
program” is an argument passed to the println() method. String represents a Java
class that can be used to represent character strings. The identifier args is used to hold
any String values that might be sent to the main() method. The main() method could
do something with those arguments, such as print them. Nevertheless, you must place an
identifier within the main() method’s parentheses. The identifier does not need to be
named args—it could be any legal Java identifier—but the name args is traditional.

Note: When you refer to the String class in the main() method header, the square
brackets indicate an array of String objects.

 Getting started 1–21

Your first program
Now that you understand the basic framework of a program written in Java, you are
ready to enter your first Java program into a text editor. It is a tradition among
programmers that the first program you write in any language produces “Hello, world!”
as its output. To create such a program, you can use any text editor, such as Notepad,
Text pad, or any other text-processing program.

Note: Many text editors attach their own file name extension (such as .txt or .doc) to a
saved file. Double-check your saved file to ensure that it does not have a double
extension (such as Hello.java.txt). If the file has a double extension, rename the file. If
you explicitly type quotation marks surrounding a file name (such as “Hello.java”),
most text editors will save the file as you specify, without adding an extension. Make
sure that you save your programs as .java files. The default for Notepad is to save all
documents as text.

Exhibit 1-6: The main()method shell for the Hello class

1–22 Java Programming, Second Edition (Updated)

Do it! D-1: Writing a Java program

 Here’s how Here’s why
 1 Click Start To start Notepad.

 Choose Programs,
Accessories, Notepad

 2 Choose File, Save As… To open the Save As dialog box.

 Navigate to the current unit folder

 Save the program as
"Hello.java"

(In the current unit folder.) Use quotes around
the title to make sure Notepad saves the file with
the .java extension instead of a .txt extension. It
is important that the file extension is .java. If it
is not, the compiler for Java will not recognize
the program.

 3 Type public class Hello To specify the class name as Hello. Keep in
mind that Java is case sensitive, so a class
named Hello is not the same as a class named
hello.

 4 Press e You will add the main() method between the
curly braces. It is good practice to place each
curly brace on its own line. This makes the code
easier to read.

 Type { To begin adding the class information.

 Press e

 5 Enter the following code:

public static void main(String[] args)
{

 To add the main() method header and the
opening curly brace as shown in Exhibit 1-6.

 6 Enter the following code:

System.out.println("Hello, world");

 To produce the output, “Hello, world”.

 7 Enter } To add the main() method closing curly brace.

 8 Enter } To add the class closing curly brace.

 9 Save and close the program The complete program is shown in Exhibit 1-7.

 Getting started 1–23

Exhibit 1-7: Completed Hello program

1–24 Java Programming, Second Edition (Updated)

Adding comments
Explanation

As you can see, even a simple Java program takes several lines of code. Large programs
that perform many tasks include even more code, and as you write longer programs, it
becomes increasingly difficult to remember why you included steps, or how you
intended to use particular variables.

Program comments are non-executing statements that you add to a program for the
purpose of documentation. Programmers use comments to leave notes for themselves
and for others who might read their programs in the future. At the very least, your
programs should include comments indicating the program’s author, the date, and the
program’s name or function. The best practice dictates that you should include a brief
comment to tell the purpose for each class and its methods.

You can ask students
to include additional
comments in their
code.

As you work through this course, you should add comments as the first three lines of
every program. The comments should contain the program name, your name, and the
date.

Comments can also serve a useful purpose when you are developing a program. If a
program is not performing as expected, you can comment out various statements and
subsequently run the program to observe the effect. When you comment out a statement,
the compiler will not turn that statement into executable bytecode. When the program
runs, the commented out statement does not execute. This helps you pinpoint the
location of errant statements in malfunctioning programs.

There are three types of comments in Java:
• Line comments start with two forward slashes (//) and continue to the end of the

current line. Line comments can appear on a line by themselves or at the end of
a line following executable code.

• Block comments start with a forward slash and an asterisk (/*) and end with an
asterisk and a forward slash (*/). Block comments can appear on a line by
themselves, on a line before executable code, or after executable code. Block
comments also can extend across as many lines as needed.

Tell students that the
forward slash (/) and
the backslash (\)
characters are often
confused, but they are
two distinct characters.
Tell them they cannot
use them
interchangeably.

• Javadoc comments are a special case of block comments. They begin with a
forward slash and two asterisks (/**) and end with an asterisk and a forward
slash (*/). You can use javadoc comments to generate documentation with a
program named javadoc.

The Java Development Kit (JDK) includes the javadoc tool that contains classes that
you can use when writing programs in the Java programming language. The JDK can be
downloaded from the Sun website at http://java.sun.com/j2se/.

Exhibit 1-8 shows how comments are used in code.

 Getting started 1–25

Exhibit 1-8: Using comments in a program

Do it! D-2: Adding comments to a program

 Here’s how Here’s why
 1 Open your Hello.java program To add comments to the program.

 2 Save the program as
"Hello2.java"

(In the current unit folder.) To create a new class
file. You will change the class name Hello to
Hello2.

Make sure students save
the program in the current
unit folder.

 3 Place the insertion point at the
beginning of the file

(Before “public class Hello”.) You will add
comments in this file.

 4 Press e To insert a new line.

 5 Press z To go to the line you added in the previous step.

 6 Enter the following line comments:

// File name Hello2.java
// Written by <your name>
// Written on <today's date>

 You should replace the placeholders and include
your name and today’s date in your comments.
Also, make sure you press Enter after typing
each comment line.

 7 Scroll to the end of the fourth line
in the program

This line reads “public class Hello”.

 Rename the class Hello2

 Press e

1–26 Java Programming, Second Edition (Updated)

 8 Enter the following block comment:

/* This program demonstrates the use of the println()►
 method to print the message Hello, world 2! */

 9 Edit the output line so it will print
Hello, world 2!

The output line currently reads
“System.out.println("Hello, world");”.

 10 Update and close the program To save the completed program. The complete
program is shown in Exhibit 1-9.

Exhibit 1-9: Completed Hello2 program

 Getting started 1–27

Running a program
Explanation

After you write and save your program, there are two steps that must occur before you
can view the program output:

1 You must compile the program you wrote (the source code) into bytecode.
2 You must use the Java interpreter to translate the bytecode into executable

statements.

To compile your source code from the command line, type javac followed by the name
of the file that contains the source code. For example, to compile a file named First.java,
you would type javac First.java and then press Enter. There will be one of three
outcomes:

• You receive a message such as “Bad command or file name.”
• You receive one or more program language error messages.
• You receive no message, which means that the program compiled successfully.

If you receive a message such as “Bad command or file name,” it might mean one of the
following:

• You misspelled the command javac.
• You misspelled the file name.
• You are not within the correct subfolder or subdirectory on your command line.
• The Java programming language was not installed properly.

If you receive a programming language error message, then there are one or more
syntax errors in the source code. A syntax error occurs when you introduce typing
errors into your program. For example, if your class name is “first” (with a lowercase f)
in the source code, but you saved the file as First.java, you will get an error message,
such as public class first should not be defined in First.java, after compiling the program
because “first” and “First” are not the same in a case-sensitive language. If this error
occurs, you must reopen the text file that contains the source code, make the necessary
corrections, and re-compile.

If you receive no error messages after compiling the code in a file named First.java,
then the program compiled successfully, and a file named First.class was created and
saved in the same folder as the program text file. After a successful compile, you can
run the class file on any computer that has a Java language interpreter.

To run the program from the command line, you type java First. Exhibit 1-10 shows
the program’s output.

Exhibit 1-10: Output of the First program

1–28 Java Programming, Second Edition (Updated)

If you receive the following error instead of the program running, then Java cannot find
your bytecode file named First.class:

Exception in thread "main" java.lang.NoClassDefFoundError:►
 First

One of the places Java tries to find your bytecode file is your current directory. If your
bytecode file is in C:\Student Data\Unit_01, you should change your current directory to
that. To change your directory, type the following command at the prompt and press
Enter:

cd C:\Student Data\Unit_01

The prompt should change to C:\Student Data\Unit_01>. If you enter dir at the prompt,
you should see your .java and .class files. Now enter java First again.

Note: If you still have problems, you might have to change your CLASSPATH
variable. To see if this is necessary, try “prodding” the CLASSPATH with the following
command:

set CLASSPATH=

Now enter java First again. If the program works now, you will have to change your
CLASSPATH variable. You set the CLASSPATH variable the same way you
previously set the PATH variable.

 Getting started 1–29

Do it! D-3: Compiling and interpreting a program

 Here’s how Here’s why
 1 Click Start

 Choose Programs,
Accessories,
Command Prompt

To open a command prompt.

 2 At the command line, enter the
following command:

cd C:\Student Data\Unit_01

 To change the directory to the current unit
folder.

 3 Type javac Hello2.java To compile Hello2.java. If students receive an
error message, help them
find and correct the
problem. Press e If you receive an error message, you should try

to find its cause, and then make the necessary
corrections. Save the file again, and then repeat
this step until your program compiles
successfully.

 4 Type java Hello2 To execute the program at the command line.

When you run a Java program using the java
command, do not add the .class extension to the
file name.

 5 Press e To view the output, as shown in Exhibit 1-11.

Exhibit 1-11: Output of the Hello2 program

1–30 Java Programming, Second Edition (Updated)

Modifying a program
Explanation

After viewing the program output, you might decide to modify the program to get a
different result. For example, you might decide to change the First program’s output to
the following:

My new and improved
Java program

 You can use the following steps to produce the new output:
1 Open the First.java file and save it as First2.java.
2 Change the class name from First to First2.
3 Change the first output statement to:

System.out.println("My new and improved");

4 After the first output statement, add the following output statement:
System.out.println("Java program");

The completed program is shown in Exhibit 1-12.

Exhibit 1-12: Changing a program’s output

However, if you type java First2 at the command line right now, you will not see
the new output—instead, you will see the old output. Before the new source code will
execute, you must do the following:

1 Compile the First2.java file with the javac command.
2 Interpret the First2.class bytecode with the java command.

 Getting started 1–31

Debugging a program

 If you introduce typing errors into your code, the compiler will produce an error
message when you compile the code. The exact error message depends on the compiler.
In the First program, typing the System.out.println() code as
system.out.println("First Java Program"); produces an error message
similar to “cannot resolve symbol…” This is a compile-time error commonly referred to
as a syntax error. The compiler detects the violation of language rules and refuses to
translate the program to bytecode. The compiler reports the errors it finds during
compilation so that you can fix the errors and then re-compile the program. Sometimes
one error in syntax causes subsequent errors that would not exist if the first syntax error
did not exist. You should correct the errors in the order listed by the compiler, and then
re-compile the program.

A second kind of error occurs when the syntax of the program is correct but the
compiled program produces incorrect results. This is a run-time error or logic error. In
the First program, typing the System.out.println() code as
System.out.println("Frst Java Program"); does not produce an error. The
compiler does not find the spelling error of “Frst” instead of “First”. Errors of this type
must be detected by carefully examining the program output. It is the responsibility of
the program author to test programs and find any logic errors. Good programming
practice stresses programming structure and development that helps minimize errors.

1–32 Java Programming, Second Edition (Updated)

Do it! D-4: Modifying and rerunning a program

 Here’s how Here’s why
 1 Open Hello2.java You will modify the Hello2 class.

 2 Save the program as
"Hello3.java"

To create a new class file. You will change the
class name Hello2 to Hello3.

 3 Edit the first comment line to read
// File name Hello3.java

 4 Rename the class Hello3 Edit the line that reads “public class Hello2.”

 5 Edit the statement that prints
Hello, world 2! so that it will print
Hello, world 3!

The line currently reads
“System.out.println("Hello, world 2");”.

 6 Place your insertion point after the
following statement:

System.out.println("Hello, world 2");

 Press e

 7 Enter the following code:

System.out.println("I'm ready for Java programming!");

 To add a line that prints “I’m ready for Java
programming!”

Tell students to
make sure they type the
semicolon at the end of
the statement and use the
correct case.

 8 Update and close the program To save your completed Hello3 program. The
complete program is shown in Exhibit 1-13.

 9 Switch to the command prompt

 10 Enter javac Hello3.java To compile the file.

If you receive compile errors, return to the
Hello3.java file in the text editor, fix the errors,
and then repeat Steps 3 and 4 until the program
compiles successfully.

 11 Enter java Hello3 To interpret and execute the class. The output
should appear as shown in Exhibit 1-14.

 Getting started 1–33

Exhibit 1-13: Completed Hello3 program

Exhibit 1-14: Output of the Hello3 program

1–34 Java Programming, Second Edition (Updated)

Unit summary: Getting started
Topic A In this topic, you learned programming concepts and object-oriented programming

concepts. You also learned how objects are made up of states and methods. You
learned that the states of an object are known as its attributes, and an individual object
is an instance of a class, and an object inherits its attributes from a class. You also
learned that the user of an object does not need to understand the details of any method,
but must understand the interface with the object.

Topic B In this topic, you learned that a program written in Java is run on a standardized
hypothetical computer called the Java Virtual Machine (JVM). You also learned that
when your program is compiled into bytecode, an interpreter within the JVM
subsequently interprets the bytecode. You also learned about Java applets and Java
applications.

Topic C In this topic, you learned how to install the Java 2 platform. You also learned the
structure of the installed directory tree. You learned how to configure the PATH
variable to conveniently run the Java 2 SDK executables such as javac.exe, java.exe,
and javadoc.exe from any directory without having to type the full path of the
command.

Topic D In this topic, you learned how to write a simple Java program, which includes a
main() method. You also learned how to include comments in your program code and
use comments for troubleshooting your programs. Then, you learned how to modify a
program. You also learned how to compile and run a Java program.

Review questions
 1 An object’s attributes also are known as its __________________.

A states

B orientations

C methods

D procedures

 2 An instance of a(n) _____________ inherits its attributes from it.

A object

B procedure

C method

D class

 3 You must compile programs written in Java into ________________.

A bytecode

B source code

C javadoc statements

D object code

 Getting started 1–35

 4 All Java programming language statements must end with a _______________.

A period

B comma

C semicolon

D closing parenthesis

 5 Arguments to methods always appear within ____________.

A parentheses

B double quotation marks

C single quotation marks

D curly braces

 6 In a Java program, you must use _____________ to separate classes, objects, and
methods.

A commas

B semicolons

C periods

D forward slashes

 7 All Java programs must have a method named _______________.

A method()

B main()

C java()

D Hello()

 8 Non-executing program statements that provide documentation are called
__________________.

A classes

B notes

C comments

D commands

 9 The Java programming language supports three types of comments: __________,
________, and javadoc.

A line, block

B string, literal

C constant, variable

D single, multiple

1–36 Java Programming, Second Edition (Updated)

 10 After you write and save a program file, you ____________ it.

A interpret and then compile

B interpret and then execute

C compile and then resave

D compile and then interpret

 11 The command to execute a compiled program is _______________.

A run

B execute

C javac

D java

 12 You save text files containing Java language source code using the file extension
___________.

A .java

B .class

C .txt

D .src

 13 The Java Virtual Machine, or JVM, refers to a(n) _________________.

A interpreter

B operating system

C real computer

D compiler

Independent practice activity
Sample solutions for the following activities are provided in the current unit’s solutions
folder.

 1 Write, compile, and test a program that prints your first name on the screen. Save
the program as Name.java in the current unit folder.

 2 Write, compile, and test a program that prints your full name, street address, city,
state, and zip code on three separate lines on the screen. Save the program as
Address.java in the current unit folder.

2–1

U n i t 2
Using data in a program

Unit time: 120 minutes

Complete this unit, and you will know how to:

A Use constants and variables.

B Use various data types.

2–2 Java Programming, Second Edition (Updated)

Topic A: Constants and variables
Explanation

Data can be categorized as being variable or constant. Data is constant when it can’t be
changed after a program is compiled; data is variable when it might change. For
example, if you include the statement System.out.println(459); the number 459
is a constant. Every time the program containing the constant 459 is executed, the value
459 will print. You can refer to the number 459 as a literal constant because its value is
taken literally at each use.

You can also set your data as a variable. For example, if you create a variable named
ovenTemperature and include System.out.println(ovenTemperature); as a
statement, then different values might display each time the program is executed,
depending on what value is stored in the ovenTemperature variable each time the
program is run.

Do it! A-1: Discussing constants and variables

 Questions and answers
 1 When data can’t be changed after a program is compiled, the data is ______.

A constant

B variable

C volatile

D mutable

 2 What do you use in your program when you have data that might change?

variables

Variable declaration
Explanation Variables are named memory locations that your program can use to store values. You

name variables by using the same naming rules as for legal class identifiers. Variable
names must start with a letter and can’t be any of the reserved keywords. You must
declare all variables you want to use in a program.

 A variable declaration includes the following:
• A data type that identifies the type of data that the variable will store
• An identifier that is the variable’s name
• An optional assigned value, when you want a variable to contain an initial value
• An ending semicolon

Note: Variable names usually begin with lowercase letters to distinguish them from
class names, however, variable names can begin with either an uppercase or a lowercase
letter.

 Using data in a program 2–3

Declaring a variable without an initial value

You can declare variables, which are not assigned a value at the time of creation. For
example, here is a statement that declares a variable that can store integers:

int ovenTemperature;

The data type is int, the variable name is ovenTemperature, and the semi-colon
marks the end of the statement. The variable, ovenTemperature, can only store values
of type int.

Declaring a variable with an initial value

You can also declare a variable and assign a value at the time of creation. For example:
int myAge = 25;

The date type is int, the variable name is myAge, the initial value is 25, and the semi-
colon marks the end of the statement. The equals sign (=) is the assignment operator.
Any value to the right of the equals sign is assigned to the variable on the left of the
equals sign. An assignment made when you declare a variable is an initialization; an
assignment made later is simply an assignment. Thus, int myAge = 25; initializes
myAge to 25. A subsequent statement such as myAge = 42; might assign a new value
to the variable. You should note that the expression 25 = myAge; is illegal.

Declaring multiple variables

You can declare multiple variables of the same type in separate statements on different
lines. For example, the following statements declare two variables—the first variable is
named myAge and its value is 25. The second variable is named yourAge and its value
is 19.

int myAge = 25;
int yourAge = 19;

You can also declare two variables of the same type in a single statement by separating
the variable declarations with a comma, shown in the following statement:

int myAge = 25, yourAge = 19;

If you want to declare variables of different types, you must use a separate statement for
each type. The following statements declare two variables of type int (myAge and
yourAge) and two variables of type double (mySalary and yourSalary):

int myAge, yourAge;
double mySalary, yourSalary;

2–4 Java Programming, Second Edition (Updated)

Do it! A-2: Declaring variables

 Here’s how Here’s why
 1 Open a new text file You will declare and display values in a

program.

 2 Save the program as
DemoVariables.java

Save the program in the current unit folder. Make sure students
save the program to the
current unit folder.

 3 Enter the following code:

public class DemoVariables
{
}

 To write a class header.

 4 Place the insertion point after the
opening curly brace

 Press e To enter a new line.

 Enter the following code:

public static void main(String[] args)
{
}

 To write the main() method.

 5 In the main() method, place the
insertion point after the opening
curly brace

 Press e To enter a new line.

 Enter int oneInt = 315; To declare a variable of type int named oneInt
with a value of 315. You can declare variables at
any point within a method prior to their first use,
however, it is a common practice to declare
variables first, and place method calls second.

 6 Enter the following code:

System.out.print("The int is ");
System.out.println(oneInt);

Tell students if they type a
space before the closing
quotation mark in a literal
string such as “The int is ”,
a space will be added
between the end of the
literal string and the value
that prints.

 To write the two output statements. The first
statement uses the print() method to output “The
int is ” and leaves the insertion point on the
same output line. The second statement uses the
println() method to output the value of oneInt
and advances the insertion point to a new line.

 Using data in a program 2–5

 7 Update and close the program The completed program is shown in Exhibit 2-1.

 8 Switch to the command prompt If necessary.

 9 At the command prompt, enter: Make sure students
change the directory to
the current unit folder.

cd C:\Student Data\Unit_02

 To change the directory to the current unit
folder.

 10 Enter the following command:

javac DemoVariables.java

 To compile the file. If you encounter any errors,
correct the errors, save the program, and
compile it again.

 11 Enter the following command:

java DemoVariables

 To execute the program.

 12 Examine the output As shown in Exhibit 2-2.

Exhibit 2-1: Completed DemoVariables program

Exhibit 2-2: Output of the DemoVariables program

2–6 Java Programming, Second Edition (Updated)

Do it! A-3: Discussing variable declaration

 Questions and answers
 1 Which of the following elements is optional in a variable declaration?

A A type

B An identifier

C An assigned value

D A semicolon

 2 The statement int i; is an example of ________.

A initialization

B assignment

C declaration

D constant

 3 To distinguish them from class names, variable names usually begin with
___________ letters.

lowercase

 Using data in a program 2–7

Topic B: Data types and character sets
Explanation Now you will learn how to use primitive data types. You will also learn about ASCII

and Unicode character sets.

Primitive data types

 The Java programming language provides the following eight primitive data types:
• boolean
• float
• byte
• int
• char
• long
• double
• short

These eight data types are called primitive types because they are simple and
uncomplicated. Primitive types serve as the building blocks for more complex data
types, called reference types.

The int data type

 You use variables of type int to store (or hold) integers, or whole numbers. An integer
can hold any whole number value from –2,147,483,648 to 2,147,483,647.

When assigning a value to an int variable, you do not type any commas; you type only
digits and an optional plus or minus sign to indicate a positive or negative integer.

Note: The legal integer values are –231 through 231–1. These are the highest and lowest
values that you can store in four bytes of memory, which is the size of an int variable.

The types byte, short, and long are all variations of the integer type. You use byte
or short if you know a variable will need to hold only small values so you can save
space in memory. Use a long type if you know you will be working with large values.
The range for each of these types are shown in the following table:

Type Range Size in bytes

byte –128 to 127 1

 short –32,768 to 32,767 2

 int –2,147,483,648 to 2,147,483,647 4

 long –9,223,372,036,854,775,808 to
 9,223,372,036,854,775,807

8

2–8 Java Programming, Second Edition (Updated)

It is important to choose appropriate types for the variables you will use in a program. If
you attempt to assign a value that is too large for the data type of the variable, the
compiler will issue an error message and the program will not execute. If you choose a
data type that is larger than you need, you waste memory. For example, a personnel
program might use a byte variable for number of dependents (a limit of 127 is more
than enough), a short variable for hours worked in a month (127 is not enough), and
an int variable for an annual salary. Even though a limit of 32,000 might be large
enough for your salary, it is not enough for the CEO.

If your program uses a literal constant integer, such as 932, the integer is an int type by
default. If you need to use a constant higher than 2,147,483,647, you must follow the
number with the letter L to indicate long as shown in the following statement:

long mosquitosInTheNorthWoods = 2444555888L;

The statement stores a number that is greater than the maximum limit for the int type.
You can type either an uppercase or lowercase L to indicate the long type, but the
uppercase L is preferred to avoid confusion with the number one.

 Using data in a program 2–9

Do it! B-1: Using int data type

 Here’s how Here’s why
 1 Open DemoVariables.java You will declare variables of int data type.

 2 Save the program as
DemoVariables2.java

 3 Rename the class DemoVariables
to DemoVariables2

 4 Place the insertion point after
int oneInt = 315;

 Press e To start a new line.

 Enter the following code:

short oneShort = 23;
long oneLong = 1234567876543L;

 5 Place the insertion point after the
following statement:

System.out.println(oneInt);

 Press e

Enter the following code: Tell students they can
also enter this code from
“B1Code1.txt” file from the
current unit folder.

System.out.print("The short is ");
System.out.println(oneShort);
System.out.print("The long is ");
System.out.println(oneLong);

 To display the values of the two new variables.

 6 Update the program The completed program is shown in Exhibit 2-3.

 7 Switch to the command prompt

 8 Compile the program At the command prompt, enter
javac DemoVariables2.java.

 9 Execute the program At the command prompt, enter
java DemoVariables2.

 10 Examine the output As shown in Exhibit 2-5.

 11 Switch to DemoVariables2.java

 12 Save the program as
DemoVariables3.java

2–10 Java Programming, Second Edition (Updated)

 13 Rename the class
DemoVariables2 to
DemoVariables3

To write a program where the two print methods
are combined into a single statement.

 14 Select the following statements:

System.out.print("The int is ");
System.out.println(oneInt);

 Press d To delete the selected text.

 In place of the deleted statements,
type:

System.out.println("The int is " + oneInt);

 15 Select the following statements:

System.out.print("The short is ");
System.out.println(oneShort);

 Press d To delete the two selected statements.

 In place of the deleted statements,
type:

System.out.println("The short is " + oneShort);

 16 Delete the following statements:

System.out.print("The long is ");
System.out.println(oneLong);

 In place of the deleted statements,
type:

System.out.println("The long is " + oneLong);

 17 Update and close the program The completed program is shown in Exhibit 2-4.

 18 Compile and run the program Notice the output for this program is the same as
the output for the DemoVariables2 program, as
shown in Exhibit 2-5.

 Using data in a program 2–11

Exhibit 2-3: Completed DemoVariables2 program

Exhibit 2-4: Completed DemoVariables3 program

Exhibit 2-5: Output of the DemoVariables2 program

2–12 Java Programming, Second Edition (Updated)

Arithmetic operators
Explanation Use the arithmetic operators to manipulate values in your programs. The following table

describes five standard arithmetic operators for integers:

Operator Description Example

+ Addition 45 + 2, the result is 47

 - Subtraction 45 – 2, the result is 43

 * Multiplication 45 * 2, the result is 90

 / Division 45 / 2, the result is 22 (not 22.5)

 % Modulus (remainder) 45 % 2, the result is 1 (that is, 45 / 2 = 22
with a remainder of 1)

Note: You do not need to perform a division operation before you perform a modulus
operation. A modulus operation can stand-alone.

When you divide two integers, whether they are integer constants or integer variables, the
result is an integer, any fractional part of the result is lost. For example, the result of 45 / 2 is
22, even though the result is 22.5 in a mathematical expression. When you use the modulus
operator with two integers, the result is an integer with the value of the remainder after
division takes place—the result of 45 % 2 is 1 because 2 “goes into” 45 twenty-two
times with a remainder of 1.

 When you combine mathematical operations in a single statement, you must understand
operator precedence, or the order in which parts of a mathematical expression are
evaluated. Multiplication, division, and modulus always take place prior to addition or
subtraction in an expression. For example, consider the following expression:

int result = 2 + 3 * 4;

The expression results in 14, because the multiplication (3 * 4) occurs before adding 2.
You can override normal operator precedence by putting the operation to perform first
in parentheses. Consider the following expression with parentheses:

int result = (2 + 3) * 4;

The expression results in 20, because the addition within the parentheses takes place
first, and then that result (5) is multiplied by 4.

Do it! B-2: Using arithmetic operators

 Here’s how Here’s why
 1 Open DemoVariables3.java You will write a program that uses arithmetic

statements.

 2 Save the program as
DemoVariables4.java

 3 Rename the class
DemoVariables3 to
DemoVariables4

 Using data in a program 2–13

 4 Place the insertion point after the
following statement:

long oneLong = 1234567876543L;

 Press e To start a new line.

 Type the following code:

int value1 = 43, value2 = 10, sum, difference, product,►
 quotient, modulus;

Tell students the arrow
indicates that the line
wraps and they should not
insert a hard return. 5 Place the insertion point after the

following statement:

System.out.println("The long is " + oneLong);

 Press e

Enter the following code: Tell students they can
also enter this code from
“B2Code1.txt” file from the
current unit folder.

sum = value1 + value2;
difference = value1 - value2;
product = value1 * value2;
quotient = value1 / value2;
modulus = value1 % value2;

 To write the code for arithmetic statements.

 6 Enter the following code: Tell students they can
also enter this code from
“B2Code2.txt” file from the
current unit folder.

System.out.println("Sum is " + sum);
System.out.println("Difference is " + difference);
System.out.println("Product is " + product);
System.out.println("Quotient is " + quotient);
System.out.println("Modulus is " + modulus);

 To write the code for output statements.

 7 Update and close the program The completed program is shown in Exhibit 2-6.

 8 Compile and run the program To execute the output.

 Examine the output To analyze the output and confirm that the
arithmetic is correct, as shown in Exhibit 2-7.

2–14 Java Programming, Second Edition (Updated)

Exhibit 2-6: Completed DemoVariables4 program

Exhibit 2-7: Output of the DemoVariables4 program

Do it! B-3: Discussing arithmetic operators

 Questions and answers
 1 The modulus operator ________________.

A is represented by a forward slash

B provides the remainder of integer division

C provides the quotient of integer division

D Both B and C

 2 According to the rules of operator precedence, division always takes place prior to
____________.

A multiplication

B modulus

C subtraction

D Both A and B

 Using data in a program 2–15

The boolean data type
Explanation

Boolean logic is based on true-or-false comparisons. A boolean variable can hold only
one of two values—true or false. You can declare and assign appropriate values to
boolean variables as:

boolean isItPayday = false;
boolean areYouBroke = true;

You can assign values based on the result of comparisons to boolean variables. A
comparison operator compares items; an expression containing a comparison operator
has a boolean value. The following table describes Java’s six comparison operators:

Operator Example (true) Example (false)

< (Less than) 3 < 8 8 < 3

 > (Greater than) 4 > 2 2 > 4

 = = (Equal to) 7 = = 7 3 = = 9

 <= (Less than or equal to) 5 <= 5 8 <= 6

 >= (Greater than or equal to) 7 >= 3 1 >= 2

 != (Not equal to) 5 != 6 3 != 3

When you use any of the operators that have two symbols (= =, <=, >=, or !=), you
cannot place any white space between the two symbols, however, you can place white
space around the symbols to increase legibility.

Legal, declaration statements might include the following statements, which compare
two values directly:

boolean isSixBigger = (6 > 5);
// Value stored would be true
boolean isSevenSmallerOrEqual = (7 <= 4);
// Value stored would be false

Note: Variable names are easily identified as boolean if you use a form of “to be” (such
as “is” or “are”) as part of the variable name.

The boolean expressions are more meaningful when variables that have been assigned
values, are used in the comparisons, as in the following examples:

boolean overtime = (hours > 40);
boolean highTaxBracket = (income > 100000);

In the first statement, the hours variable is compared to a constant value of 40. If the
hours variable is not greater than 40, then the expression evaluates to false. In the
second statement, the income variable must be greater than 100000 for the expression
to evaluate to true.

2–16 Java Programming, Second Edition (Updated)

Do it! B-4: Adding boolean variables

 Here’s how Here’s why
 1 Open DemoVariables4.java

 2 Save the program as
DemoVariables5.java

 3 Rename the class DemoVariables4 to
DemoVariables5

 4 Place the insertion point after
int oneInt = 315;

 Press e To insert a new line.

 Type the following code:

boolean isProgrammingFun = true, isProgrammingHard = false;

 To declare two new boolean variables in the
program.

 5 Press e

 Type the following code:

Remind students that the
code shown here wraps to
the next line and they
should not press Enter.

System.out.println("The value of isProgrammingFun is " +►
 isProgrammingFun);
System.out.println("The value of isProgrammingHard is " +►
 isProgrammingHard);

 To add print statements that will display values.

 6 Update and close the program The completed program is shown in Exhibit 2-8.

 7 Compile and run the program

 Examine the output As shown in Exhibit 2-9.

 Using data in a program 2–17

Exhibit 2-8: Completed DemoVariables5 program

Exhibit 2-9: Output of the DemoVariables5 program

2–18 Java Programming, Second Edition (Updated)

Floating-point data types
Explanation

A floating-point number contains decimal positions. Java supports two floating-point
data types: float and double. A float data type can hold values up to six or seven
significant digits of accuracy. A double data type can hold 14 or 15 significant digits of
accuracy. The term significant digits refer to the mathematical accuracy of a value. For
example, a float variable given the value 0.324616777 will display as 0.324617
because the value is only accurate to the sixth decimal position. The range for floating-
point values are shown in the following table:

Type Range Size in bytes

float –3.4 * 1038 to 3.4 * 1038 4

 double –1.7 * 10308 to 1.7 * 10308 8

Just as an integer constant, such as 178, is an int by default, a floating-point number
constant such as 18.23 is a double by default. To store a value explicitly as a float,
you can type the letter F after the number, as shown in the following statement:

float pocketChange = 4.87F;

You can type either a lowercase or an uppercase F, you can also type D (or d) after a
floating-point value to indicate it is a double. Even without the D, the value will be
stored as a double by default.

As with int types, you can perform the mathematical operations of addition,
subtraction, multiplication, and division with floating-point numbers; however, you
cannot perform modulus operations using floating-point values. Floating-point division
yields a floating-point result, there is no remainder.

 Using data in a program 2–19

Do it! B-5: Using floating-point data types

 Here’s how Here’s why
 1 Open DemoVariables5.java You will add floating-point variables to a

program.

 2 Save the program as
DemoVariables6.java

 3 Rename the class
DemoVariables5 to
DemoVariables6

 4 Place the insertion point after the
following statement:

boolean isProgrammingFun = true, isProgrammingHard = false;

 Press e To start a new line.

 Enter the following code:

double doubNum1 = 2.3, doubNum2 = 14.8, doubResult;

 To add three new floating-point variables.

 5 Enter the following code: Tell students they can
also enter this code from
the “B4Code1.txt” file from
the current unit folder.

Remind students that the
code shown here wraps to
the next line and they
should not press Enter.

doubResult = doubNum1 + doubNum2;
System.out.println("The sum of the doubles is " +►
 doubResult);
doubResult = doubNum1 * doubNum2;
System.out.println("The product of the doubles is "+►
 doubResult);

 To perform arithmetic and produce output.

 6 Update and close the program The completed program is shown in Exhibit 2-
10.

 7 Compile and run the program

 Examine the output As shown in Exhibit 2-11.

2–20 Java Programming, Second Edition (Updated)

Exhibit 2-10: Completed DemoVariables6 program

Exhibit 2-11: Output of the DemoVariables6 program

 Using data in a program 2–21

Do it! B-6: Discussing floating-point data types

 Questions and answers
 1 The value 137.68 can be held by a variable of type _______.

A int

B float

C double

D Both B and C

 2 A float value is accurate to which decimal position?

A Sixth

B Seventh

C Eighth

D Tenth

2–22 Java Programming, Second Edition (Updated)

Numeric type conversion
Explanation When you are performing arithmetic with variables or constants of the same type, the

result of the arithmetic retains the same type. For example, when you divide two ints,
the result is an int, and when you subtract two doubles, the result is a double. Often,
however, you might want to perform mathematical operations on unlike types. In the
following example you multiply an int by a double:

int hoursWorked = 37;
double payRate = 6.73;
double grossPay = hoursWorked * payRate;

 When you perform arithmetic operations with operands of unlike types, Java chooses a
unifying type for the result. Java then implicitly (or automatically) converts
nonconforming operands to the unifying type.

Note: An operand is simply any value used in an arithmetic or logical operation.

 The following list of operands ranks the order for establishing unifying types between
two variables:

• double
• float
• long
• int
• short
• byte

In other words, grossPay is the result of multiplication of an int and a double, so
grossPay itself must be a double. If grossPay is the result of the addition of a
short and an int, then the result would be an int.

 You can explicitly, or purposely, override the unifying type imposed by the Java
programming language by performing a type cast. Type casting involves placing the
desired result type in parentheses, followed by the variable or constant to be cast. For
example, two type casts are performed in the following code:

double bankBalance = 189.66;
float weeklyBudget = (float) bankBalance / 4;
// weeklyBudget is 47.415, one-fourth of bankBalance
int dollars = (int) weeklyBudget;
// dollars is 47, the integer part of weeklyBudget

The double value bankBalance / 4 is converted to a float before it is stored in
weeklyBudget, and the float value weeklyBudget is converted to an int before it
is stored in dollars. When the float value is converted to an int, the decimal place
values are lost.

You can lose data when performing a cast. For example, the largest byte value is 127
and the largest int value is 2,147,483,647, the following statements produce distorted
results:

int anOkayInt = 200;
byte aBadByte = (byte)anOkayInt;

 Using data in a program 2–23

A byte is constructed from eight 1s and 0s, or binary digits. The first binary digit, or bit,
holds a 0 or 1 to represent positive or negative. The remaining seven bits store the actual
value. When the integer value 200 is stored in the byte variable, its large value
consumes the eighth bit, turning it to a 1, and forcing the aBadByte variable to appear
to hold the value –72 that is inaccurate and misleading.

Do it! B-7: Discussing numeric type conversion

 Questions and answers
 1 You use a ________ to explicitly override an implicit type.

A mistake

B type cast

C format

D type set

 2 When adding a float, a double, and an int, the result is ________.

A float

B double

C int

D long

 3 Which of the following operations yield 1 as an answer?

A 13 % 4

B 13.0 % 4.0

C 8 % 4

D 8.0 % 4.0

 4 When you perform mathematical operations on unlike types, Java _______
converts the variables to a unifying type.

implicitly

 5 Converting from one data type to another in Java is done implicitly and
_________.

explicitly

2–24 Java Programming, Second Edition (Updated)

The char data type
Explanation

You use the char data type to hold any single character. You place constant character
values within single quotation marks because the computer stores characters and
integers differently.

For example, the statements char aCharValue = '9'; and int aNumValue = 9;
are legal. The statements char aCharValue = 9; and int aNumValue = '9';
might produce undesirable results. Consider the following println() statement:

System.out.println("aCharValue is " + aCharValue +►
 "aNumValue is " + aNumValue);

When these variables are used in the statement, the resulting output is a blank and the
number 57, which are ASCII codes. Exhibit 2-12 shows ASCII decimal codes and
character equivalents. A number can be a character, but it must be enclosed in single
quotation marks and declared as a char type, however, you cannot store an alphabetic
letter in a numeric type. The following code shows how you can store any character
string by using the char data type:

char myInitial = 'J';
char percentSign = '%';
char numThatIsAChar = '9';

Exhibit 2-12: ASCII character set

 Using data in a program 2–25

 A char type variable can hold only one character. To store a string of characters, such
as a person’s name, you must use a data structure called a String. Unlike single
characters, that use single quotation marks, string constants are written between double
quotation marks. For example, the expression that stores the name Audrey as a string in
a variable named firstName is String firstName = "Audrey";.

You can store any character—including nonprinting characters such as a backspace or a
tab—in a char variable. To store these characters, you must use an escape sequence,
which always begins with a backslash. For example, the following code stores a
backspace character and a tab character in the char variables aBackspaceChar and
aTabChar:

char aBackspaceChar = '\b';
char aTabChar = '\t';

In the preceding code, the escape sequence indicates a unique value for the character,
instead of the letters b or t. Some common escape sequences are listed in the following
table:

Escape sequence Description

\b Backspace

 \t Tab

 \n Newline or linefeed

 \f Form feed

 \r Carriage return

 \” Double quotation mark

 \’ Single quotation mark

 \\ Backslash

2–26 Java Programming, Second Edition (Updated)

Do it! B-8: Using escape sequences

 Here’s how Here’s why
 1 Open DemoVariables6.java

 2 Save the program as DemoVariables7.java

 3 Rename the class DemoVariables6 to DemoVariables7

 4 Place the insertion point before
the last curly brace in the program

In the last line of the program.

 Press e To create a new line.

 Press z

 Type the following code:

System.out.println("\nThis is on one line\nThis on►
 another");
System.out.println("This shows\thow\ttabs\twork");

 5 Update and close the program The completed program is shown in
Exhibit 2-13.

 6 Compile and run the program To execute the output.

 Examine the output As shown in Exhibit 2-14.

Exhibit 2-13: Completed DemoVariables7 program

 Using data in a program 2–27

Exhibit 2-14: Output of the DemoVariables7 program

Do it! B-9: Discussing escape sequences

 Questions and answers
 1 An escape sequence always begins with a ________.

A ‘e’

B forward slash

C backslash

D equals sign

 2 You type constant character values in ______ quotes.

single

 3 You type string constants between ______ quotation marks.

double

2–28 Java Programming, Second Edition (Updated)

ASCII and Unicode
Explanation

The characters used in the Java programming language are represented in Unicode,
which is a 16-bit coding scheme for characters. For example, the letter A actually is
stored in computer memory as a set of 16 zeros and ones as 0000 0000 0100 0001. The
space inserted after each set of four digits is for readability.

Programmers often use a shorthand notation called hexadecimal, or base 16, because
16-digit numbers are difficult to read. In hexadecimal shorthand, 0000 becomes 0; 0100
becomes 4, and 0001 becomes 1, the letter A is represented in hexadecimal as 0041.
You tell the compiler to treat the four-digit hexadecimal 0041 as a single character by
preceding it with the \u escape sequence, therefore, there are two ways to store the
character A:

char letter = 'A';
char letter = '\u0041';

Note: For more information about Unicode, go to http://www.unicode.org.

The second option that uses hexadecimal is more difficult and confusing than the first
method. It is not recommended that you store letters of the alphabet by using the
hexadecimal method, however, there are some interesting values you can produce using
the Unicode format. For example, the sequence '\u0007' is a bell that produces a
noise if you send it to output. Letters from foreign alphabets that use characters instead
of letters (Greek, Hebrew, Chinese, and so on) and other special symbols (foreign
currency symbols, mathematical symbols, geometric shapes, and so on) are available
using Unicode, but not on a standard keyboard. It is important that you know how to use
Unicode characters.

The most widely used character set is ASCII. (American Standard Code for Information
Interchange.) There are 128 characters in the ASCII character set, with their decimal
code or numerical code and equivalent character representation. The first 32 characters
and the last character are control characters and are nonprintable. You can enter these
characters by holding down [Ctrl] and pressing a letter on the keyboard. For example,
The Tab key or ^I(Ctrl I) produces a character 9, that produces a hard tab when pressed.

The relationship of ASCII and Unicode is that by adding eight zeros to any ASCII
character gives the character’s value in Unicode. The ASCII values are important
because you can use them to show nonprintable characters, such as a carriage return, in
decimal codes. ASCII codes are often used when sorting numbers and strings, so when
you need to sort characters in ascending order, numbers beginning with decimal 48 or 0
are sorted first, then capital letters starting with decimal 65 or A, and then lowercase
letters starting with decimal code 97 or a.

 Using data in a program 2–29

Do it! B-10: Discussing ASCII and Unicode

 Questions and answers
 1 The 16-bit coding scheme employed by the Java programming language is called

________.

A Unicode

B ASCII

C EBCDIC

D hexadecimal

 2 How many characters are there in the ASCII character set?

A 256

B 128

C 127

D 512

 3 Hexadecimal is base _______.

A 8

B 16

C 2

D 10

2–30 Java Programming, Second Edition (Updated)

Unit summary: Using data in a program
Topic A In this topic, you learned that data can be categorized as a variable or constant. You

learned that data is constant when it can’t be changed after a program is compiled; and
the data is variable when it might change. You also learned about the primitive data
types and how to declare variables in a Java program.

Topic B In this topic, you learned the eight primitive data types, boolean, byte, char, double,
float, int, long, and short, in detail. You learned that operator precedence is the order
in which parts of a mathematical expression are evaluated. You also learned about the
two character sets: ASCII and Unicode.

Review questions
 1 The assignment operator in the Java programming language is _______.

A =

B = =

C :=

D ::

 2 Which of the following values can you assign to a variable of type int?

A 0

B 98.6

C ‘S’

D 5,000,000,000,000

 3 Boolean variables can hold _______.

A any character

B any whole number

C any decimal number

D the value true or false

 4 The “equal to” comparison operator is ______.

A =

B = =

C !=

D !!

 Using data in a program 2–31

 5 If you attempt to add a float, an int, and a byte, the result will be ______.

A float

B int

C byte

D error message

 6 Which assignment is correct?

A char aChar = 5;

B char aChar = “W”;

C char aChar = ‘*’;

D Two of the preceding answers are correct.

Independent practice activity
Sample solutions for the following activities are provided in the current unit’s solutions
folder.

 1 Write a program that declares variables to represent the length and width of a room
in feet, and the price of carpeting per square foot in dollars and cents. Use Carpet as
the class name. Assign appropriate values to the variables. Compute and display,
with explanatory text, the cost of carpeting the room. Save the program as
Carpet.java in the current unit folder.

 2 Write a program that declares variables to represent the length and width of a room
in feet, and the price of carpeting per square yard in dollars and cents. Use Yards as
the class name. Assign the value 25 to the length variable and the value 42 to the
width variable. Compute and display the cost of carpeting the room. (Hint: There
are nine square feet in one square yard.) Save the program as Yards.java.

 3 Write a program that declares a minutes variable that represents minutes worked on
a job, and assign a value. Use Time as the class name. Display the value in hours
and minutes. For example, 197 minutes becomes 3 hours and 17 minutes. Save the
program as Time.java.

 4 Write a program that declares variables to hold your three initials. Display the three
initials with a period following each one, as in J.M.F. Save the program as
Initials.java.

 5 Write a program that displays FirstName, LastName, Address, and Phone on one
line of output, and your first name, last name, address, and phone number on the
second line. Make sure that your data lines up with the headings. Save the program
as Escape.java.

2–32 Java Programming, Second Edition (Updated)

